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Summary in English

In this work, the aim was to produce a realistic assessment of yearly mortality
of Archipelago Sea pike perch during the period 1997-2012. The utilized data
origins from the mark-recapture experiment carried out by the Finnish Game
and Fisheries Research Institute (FGFRI). In this mark-recapture experiment,
returnings of the marks were based on voluntary tag reporting by the fishermen
gaining small monetary rewards. In this study design, the count of returned tags
is affected by the size of the release cohort, efficiency of the fishing method used
by a fisherman and the fisherman’s willingness to return the tag. In addition,
each year a proportion of the tags become detached from fish, which means that
those tags cannot be returned. All these factors were taken into account in a
hierarchical model, which was developed in the same fashion as the well-known
Cormack-Jolly-Seber model. Data from the yearly total catch were not used in
this work because those data will be used in the subsequent research utilizing
results of this work.

The objective of this work was to estimate fishing gear specific catchability
coefficients and mortality rates, including natural mortality rate. The amount
of data and number of parameters to be estimated set their own limitations,
so it was decided to estimate parameters of interest by splitting the data into
only three fishing fleets: professional fishermen, recreational net fishermen and
recreational line fishermen.

The estimability of the hierarchical model developed for mark-recapture data
was studied using simulation experiments. One was able to find such a model
configuration, where the parameters concerning mortality estimates may be es-
timated without significant systematic errors in the estimated posterior distri-
butions. Simultaneously, the tag reporting probabilities were estimated for each
of the three fishing fleets although systematic errors remained for these param-
eters.

The final mortality estimate indicates that about half of the Archipelago Sea
pike perch population is removed annually. For the recent years about half of
this mortality was caused by professional fishing, and almost the same amount
was due to natural death. The mortality caused by recreational fishing is the
smallest mortality component. The estimate concerns population similar to
released cohorts. The produced estimate is sensitive to many factors, whereas
effects of environmental change, or changes in seal or cormorant abundances,
were beyond the scope of this work.



Summary in Finnish

Tässä työssä pyrittiin tuottamaan mahdollisimman todenmukainen arvio Saa-
ristomeren kuhan vuosittaiselle kuolleisuudelle ajanjaksolla 1997-2012. Työssä
käytettiin Riista- ja kalatalouden tutkimuslaitoksen (RKTL) suorittamista mer-
kintä-takaisinpyyntikokeesta saatua aineistoa. Kyseessä olevalle merkintä-takai-
sinpyyntikokeelle merkkien palautuminen perustui kalastajien vapaaehtoiseen
pyydettyjen merkkien raportointiin pientä rahallista korvausta vastaan. Täl-
laisessa tutkimusasetelmassa palautuneiden merkkien määrään vaikuttaa kala-
kohortin koon lisäksi myös kalastajan käyttämän pyyntitavan tehokkuus sekä
halukkuus palauttaa merkki. Lisäksi vuosittain osasta kaloista merkki irtoaa,
jolloin kyseinen merkki ei palaudu. Kaikki nämä tekijät otettiin huomioon hie-
rarkkisessa mallissa, joka kehitettiin aiemmin tunnetun Cormack-Jolly-Seber
-mallin pohjalta. Tietoa vuosittaisesta ammatti- ja vapaa-ajankalastajien ko-
konaissaaliista ei tässä työssä käytetty, sillä kyseistä tietoa hyödynnetään myö-
hemmässä tämän työn tuloksia hyväksikäyttävässä tutkimuksessa.

Tavoitteena oli estimoida kalastustapakohtaiset pyydettävyys- ja kuollei-
suusparametrit mukaanlukien luonnollinen kuolleisuus. Aineiston koko ja esti-
moitavien parametrien määrä asetti kuitenkin omat rajoitteensa, joten tyydyt-
tiin estimoimaan halutut parametrit vain kalastajaryhmittäin käyttäen kolmea
ryhmää: ammattikalastajat, vapaa-ajan verkko- ja rysäkalastat ja vapaa-ajan
siimakalastajat.

Kehitetyn hierarkkisen mallin estimoitavuutta tutkittiin simulointikokeilla,
joissa onnistuttiin löytämään sellainen mallikonfiguraatio, jolle kuolleisuuteen
vaikuttavien muuttujien estimoinnissa ei synny merkittävää systemaattista vir-
hettä estimoituihin posteriorijakaumiin. Ohessa estimoitiin myös merkin palaut-
tamishaluukkuus kolmelle kalastajaryhmälle, mutta niiden osalta systemaatti-
sesta virheestä ei päästy kokonaan eroon.

Tuloksena saatu kuolleisuusarvio osoittaa, että Saaristomeren kuhakannasta
noin puolet menehtyy vuosittain. Viime vuosina noin puolet kuolleisuudesta on
aiheutunut ammattikalastuksesta ja lähes yhtä suuri osa luonnollisista syistä.
Vapaa-ajankalastajien aiheuttama kuolleisuus kuhalle on vähäistä. Arviossa
otaksutaan, että populaatio on samanlainen vapautettuihin kohortteihin näh-
den. Saatu estimaatti on sensitiivinen useille tekijöille eikä esimerkiksi ym-
päristön muutoksen tai hylje- ja merimetsokantojen kehityksen vaikutusta ole
huomioitu mallintamisessa lainkaan.
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1 Introduction

Understanding the size of a fish population is of economical and ecological im-
portance. The increased risk of over-exploitation of fish populations has raised
an interest towards developing more efficient methods in fish stock assessment.

In the ECOKNOWS (Effective Use of Ecosystem and Biological Knowledge
in Fisheries) -project the goal is to develop methods for efficient measures of the
size of commercially exploited fish populations, and for doing this, information
about fish mortality is needed. Another source of interest towards fish popula-
tions is to base and control the regulations and directives set by the European
Union.

Two kinds of data may be used to measure the size of fish populations;
catch-effort data or mark-recapture data. Often only catch-effort data are used
in Catch per unit effort -analysis (CPUE). If certain assumptions hold, the
CPUE approach gives information about the population trend. The problem
is that it is not possible to check if the needed assumptions hold. The mark-
recapture approach is more efficient (Seber, 1982). In mark-recapture, first a
group of fish is being tagged with individually identifiable tags and released into
the population. Then the tagged fish are being monitored either via sampling or
commercial fishing. The counts of the tagged and untagged fish in the samples
give us information about the population size.

The objective of this study is to construct prior distributions for a stock
assessment model, being posteriors derived from the mark-recapture data. The
objective of the mark-recapture analysis is to estimate gear-specific fishing mor-
tality rates and the natural mortality rate by age classes. All the analyses will be
based on mark-recapture and fishing effort data and on prior knowledge. Prior
knowledge may come from earlier studies or expert judgement. An essential
part of this work is sensitivity analyses, the purpose of which are to show how
prior information affects our final results (posterior probability distributions).

If the time between the release and the recapture is not very short, then at the
time of the recapture some of the tagged fish are likely to be removed from the
population due to fishing, natural death or emigration. Mortality is important
because, in the mark-recapture, the number of the tagged fish in the population
must be known to be able to estimate the population abundance. Thus, without
taking mortality into account, abundance estimators will be incorrect. However,
if one can provide information about mortality and give an estimate about
the number of the tagged fish in the waters, the information about population
abundance can be gathered even though the number of tags in the waters is
uncertain.

Let us now demonstrate the idea behind the mark-recapture shortly. Pe-
tersen estimator N̂ is an estimator of the true population size N . Let us denote
the number of animals in the first sample as n1, in the second sample as n2, and
the number of the tagged animals in the second sample as m2, see Table 1. Then
under the assumptions (Appendix B) ratios between the samples are expected
to be the same, or more formally m2

n2
≈ n1

N̂
. Therefore, Petersen estimator of

1



Table 1: Contingency table associated with Petersen estimator with one un-
known cell value. N is true population abundance and thus unknown.

Second sample
First sample Present Absent Total

Present m2 n1 −m2 n1
Absent n2 −m2 -
Total n2 N

the population abundance is

N̂ =
n1n2
m2

. (1)

After the long period of applying traditional frequentist methodology to this
type of problems, the Bayesian approach is nowadays more common. Exam-
ples of Bayesian analysis of tagging experiments are e.g. Whitlock and McAllis-
ter 2009, Whitlock et al. (2012). If the population remains unchanged during the
study period such that there is no migration, mortality nor recruitment, then
the population is called closed. In practice, this is often the case when the study
period is short and when there is no fishing in the study area. Whenever heavy
fishing takes place, tags are removed from the waters by many reasons. Then,
we say that population is open. The best-known open population approach is
the Jolly-Seber -method, but also many modified versions of Jolly-Seber have
been used. Jolly-Seber allows fish to die and migrate (permanently) from the
study population. In this study, we will base the model development on the
Cormack-Jolly-Seber model (CJS-model), which was first introduced by R.M.
Cormack (1964). The paper by Brooks et al. (2000) shows how CJS-model can
be used in the Bayesian frame.

Pike perch data were collected in years 1997-2012 from Archipelago Sea. All
released fish were hatchery-reared. The first release is in 1997 and the last one
in 2008. There is one five year gap in releases during 2001-2005. This does
not affect analysis methods, only weakens the accuracy. The last reported fish
is recaptured on June 2012. Each of the released pike perch was tagged by
a Carlin tag having individual identification number. There is total of 4412
released tagged pike perch, and 591 reported recaptures of pike perch in data.
This gives a rate of return 13.4 % which is a rather high rate compared with
many other studies. There is a substantial amount of missing values in the
important parameters: LENGTH 25.2 %, WEIGHT 32.9 %, GEAR 15.4 % and
MESH 50.2 %. According to data, the most intensively used fishing gear on
capturing pike perch were: gill net (77.4 %), fyke net (8.1 %) and trolling (6.6
%).

The natural choice for estimation is Bayesian methods because of the use
of multiple data sources having completely unobserved variables in the model,
possibly causing confounding between some of the variables. Furthermore, we
have useful additional information from earlier studies, which gives us infor-
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mation about the actual state of the parameters before observing the actual
mark-recapture data. Also, by using Bayesian estimation methods, taking into
account dominant uncertainties is rather straightforward.

In the next chapter, the detailed description of the data and a study area are
given. Chapter 3 describes the Cormack-Jolly-Seber model as a starting point
for modelling purposes. Further, the development of the fish mortality model
is described in detail in Chapter 3. Chapter 4 shows simulation experiment
where the efficiency of estimation is studied. Chapter 5 presents results and
posteriors, and Chapter 6 gives a discussion over the work done in the thesis.
Throughout text, it is assumed that the reader understands basic principles of
Bayesian statistical methodology and theory.
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2 Description of data

In this section, tagging and effort data and theirs missingness are described.
Additional sources of information and challenges affecting the modelling task
are discussed. Catch data are available but not discussed here because it is not
used in the model. This is to avoid double use of data in the ECOKNOWS
-project, and thus to keep the understanding about uncertainties realistic in a
subsequent work utilizing the results of this thesis.

2.1 Tagging data

The mark-recapture data are collected on pike-perch in the Archipelago Sea.
The markings have been done using a single Carlin tag per fish in the years
1997-2000 and 2006-2008, and the recaptures cover the period from 1997 to
2012. All the tagged fish were two years old, and 50.7 % of them were released
into the ICES (International Council for the Exploration of the Sea) fishing
rectangle area 47 and the rest 49.3 % into the rectangle area 52. The ICES
fishing rectangles are represented in Figure 4 (page 9).

Fish groups were released into the population at spring or early summer.
The earliest within the calendar year release date was 28th of May and the
latest 16th of June. The release-recapture matrix is given in Table 1. Most of
the recaptures, about 83 %, are captured during the first year from the release
date. There also seems to be within-year seasonal pattern in the recaptures,
see Figure 1. In total, the 40.8 % of the recaptures reported with location were
from the rectangle 47 (north), 21.0 % from the rectangle 51 (south-east) and
38.2 % from the rectangle 52 (east).

2.2 Effort data

There are two kinds of fishing effort data: professional and recreational. Profes-
sional fishing effort is measured in detail because professional fishermen are ob-
ligated to report the amount of their fishing (e.g. Söderkultalahti, 2013). Recre-
ational fishing effort is based on survey samples, where answering is voluntary.
The measurement units of the professional and recreational efforts are different:
the professional effort is in terms of the number of gear days, whilst the recre-
ational effort is in terms of fishing days. Fishing days counts only those days
used for fishing, but the number of gears used does not affect the effort. Gear
days count both days and gears used for fishing. For example, if there is in total
five fishermen and each of them has been fishing for three days (no matter how
many hours per day they were fishing) using two gears, then the total fishing
effort is 5× 3× 2 = 30 in gear days and 5× 3 = 15 in fishing days.

The professional effort is also measured for all of the ICES fishing rectangles
and about thirty most used fishing gear types. The professional fishing gear
types are separated, for example, as five gill nets groups with different mesh
sizes and four different types of trap nets. The combined measurements of gill
nets and trap nets over the three study rectangles and temporal time frame are
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Figure 1: Histogram of differences between release and recapture. Each bar
represents a month, but the start of a year is the date of the earliest release,
which is 28th of May.

described in Figure 2 for the professional effort. The professional fishing effort
used in this study consists of a gill net effort and a trap net effort relevant for
pike perch fishing.

The recreational effort bases on survey sampling executed by FGFRI every
second year (Moilanen, 2000, 2002, 2004, 2005, 2007, 2009, 2011). The applicable
surveys are from the even years of 1998-2010. The gear types reported in the
survey are: gill net; fish trap, crayfish trap or trap net; jig; hook and line;
spinning rod; fly rod; trolling gear and other gear. The survey report gives
fishing days estimates and appropriate coefficients of variation (CV). Estimates
are given for seven gear groups: gill net, jig, hook and line, spinning rod, fly
rod, trolling gear and other. These are combined into two gear groups in this:
nets (gill net, trap net and other) and lines (jig, hook and line, spinning rod,
fly rod and trolling gear). For some gears and years the uncertainties are very
high, which means that the survey sampling estimates are not accurate. The
recreational efforts combined into two gear groups and their approximate 95
% confidence intervals (using rule CV = σ

E[X] ⇒ σ = CVE[X] and CI ≈
(E[X]− 1.96σ,E[X] + 1.96σ)) are in Figure 3.
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Figure 2: Point estimates of professional fishing effort by fishing rectangles over
the study time period. The effort consists of the fyke net and gill net efforts.

2.3 Missing tagging and effort data

Missing values exist both in the effort and mark-recapture data. In the recre-
ational effort data, all the odd years 1997, 1999, . . . , 2011 and the year 2012 are
missing. In the professional effort data, the effort of the year 1997 is a miss-
ing value, but the values corresponding to the other years are observed. In
mark-recapture data, the fishing gear is missing in 10.7 % of the cases and the
recapture location in 11.2 % of the cases. Also, all the unreported captured
tags can be thought as missing values, but also their number is unknown. In
some sense, the data are similar to the presence-only data (Divino et al., 2013)
because only the reported tags (presences) may be observed.

2.4 Additional information

Mark-recapture and fishing effort data are not all the information on what the
model is build. The biological aspects of the model have to be taken into account
on the purpose that the model is biologically realistic. To do this, additional
information, also known as biological data, has to be considered in the model
building. The following claims are based on both cited articles and discussions
with fish biologists. Many of the claims seem to be valid in data analysis made
in this thesis. The biological information also gives us tools to interpret the
results of the model. We have to emphasize that not all of the ideas presented
here are based on the scientific studies but rather on deductive reasoning.

Seals seem to have increased their abundance in Baltic Sea aerial counts
(Kauhala et al., 2012). Seals eat fish, and that is why they may have an effect
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Figure 3: Estimates of recreational fishing effort in two gear type groups with
approximate 95 % confidence intervals.

on fishing in the Archipelago. It has been claimed that seals cause harm to
fish captured by gill net and those fish cannot be sold. According to experts,
increased numbers of seals might have caused fishermen to change their preferred
area of fishing towards coastline (areas 47 and 52). In the study rectangle 51,
the fishing effort seems to have been decreased, see Figure 2.

Pike perch does migrate, but this cannot be generalized to whole fish pop-
ulation. Referring to Lehtonen et al. (1996) some proportion of the pike perch
population does not migrate at all while others do. Migration is visible at the
population level in Figure 4. Even though the individually recaptured fish are
different between the two plots, this indicates that pike perch tend to stay in
shallow waters more close to the coastline during the spring. In the autumn,
many of the recaptures take place further away from the coast. Also density in
the coastline is at least moderate in both plots, which supports the idea that
not all the pike perch migrate.

Additional information about natural mortality of pike perch results from
earlier meta-analysis study made by FGFRI researcher R. Whitlock. The method-
ology of the meta-analysis study is presented in the paper (Pulkkinen et al.,
2011). The result of the study tells us that yearly natural mortality of about
18-25 percent of the living population is expected.
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2.5 Challenges of detailed modelling

Using mark-recapture data we can only observe tags once, which is at the end of
the life history of the captured fish. Process effecting the tags faith is complex,
and many variables must be estimated to take into account all key aspects of
that process. Mark-recapture data do not hold information about all of these
variables, so external information is needed to prove realistic mortality estimate
using this kind study design. External information may come from additional
data sets, which are linked to this model and estimated simultaneously. Another
way to add external knowledge is to build an informative prior distribution and
let that prior affect one’s final results.

Because data are rather small, the challenge is how to build a model de-
scribing the reality well enough and to be estimable at the same time. The
phenomenon of fishing is complex and many of the parameters vary over the
period. For example, catch probabilities differ for different gear types. In ad-
dition, professional and recreational fishermen are expected to have different
tag reporting probabilities. It may be that not all the aspects of fishing may be
modelled with the available data. Another question is also how can one estimate
both fishing and natural mortality.
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islands of the Archipelago Sea are not visible in the plot because of readability.
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3 Bayesian modelling of mark-recapture data

There are multiple reasons to use Bayesian approach in solving this kind of prob-
lems. The main reason is that significant proportion of the information comes
outside of the measured data. Specifically it means that we want to incorporate
expert understanding with the biological parameters, e.g. natural mortality or
catchability, in the model. In addition to that, combining information from
multiple data sources is natural using Bayesian methods. In this case the pro-
fessional and recreational effort data and the mark-recapture data origin from
different sources. Also, the key interest here is that how uncertain we actually
are about the model variables in the light of data and additional information?
Bayesian computation and sensitivity analyses give us tools to study the true
uncertainties.

Although the data of this work arise from a mark-recapture experiment, the
problem specification differs significantly from Petersen model. Reason to this
is that catch data are not available. Instead of having second sample of marked
and unmarked animals, only marked animals are now in the available data. The
interest is on modelling yearly mortality, so this work can be seen as a relative
to survival analysis having discrete time steps (Kalbfleisch and Prentice, 2002).

In this section an open population model is presented which can be used to
estimate total mortality. The model will be developed according to data and
phenomena of fishing and tagging experiments. Crucial things effecting these
phenomena will be taken into account. Section 3.1 defines an open population
model, which is developed further in Section 3.2. In Section 3.3 prior distri-
butions are build for the developed model. We will reparametrize the model,
include the effort data in the modelling and take into account the effect of miss-
ing data and missing variables. Finally, possibilities of modelling additional
variation of the recapture data are discussed. Notation of this chapter is given
in Table 3.

3.1 Cormack-Jolly-Seber model as a starting point

The following model can be viewed as a starting point for modelling of fish
mortality. The section is based on the reasoning in Brooks et al. (2000). Data
used in the original paper is collected on birds (European dippers, L. Cinclus
cinclus). The described model suits both data on resightings and recaptures, so
the model can be used in fishery applications as well.

The time resolution used is one year, and indexing of the years starts from
one instead of the actual year itself. Let us denote the release years as i =
1, . . . , I and recapture years j = 2, . . . , J , I < J . The count of released animals
in the year i is denoted by Ri and release-recapture data matrix M = [mij ],
where each row mi holds information on numbers of animals released in the year
i and the jth column gives numbers of animals caught in the year j. Therefore,
cell mij holds the number of those animals who were released in the year i and
captured in the year j. Note, that cells on the diagonal and below are zero
because animals cannot be captured before they are released. For example,
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Table 3: The notation used in Chapter 3

Symbol Meaning

General notation

i = 1, . . . , I release years
j = 1, . . . , J recapture years
f = 1, . . . , C fishing fleets aka. groups of fishermen
M release-recapture matrix
mi row of M holding data from release i
mij cell of release-recapture matrix
Ri count of released tags at year i

Notation of Cormack-Jolly-Seber model

φk survival probability for year k
pk capture probability used in CJS-model for year k

Notation of fish mortality model

Ef,k fishing effort of fleet f for year k
qf tag catch probability of fleet f
M instantaneous natural mortality rate
Ff,k instantaneous fishing mortality rate of fleet f year k
Zf,k instantaneous total mortality rate of fleet f year k
a(i, k) age group a depending on release year i and current year k
pobsf,k,a probability to observe a tag in data given that tag was in

population at the end of previous year

pstayk,a probability that tag remains in the population given that

it was in population at the end of previous year
pretain,a probability that tag retains (does not shed) in fish
preport,f probability that tag is reported given that it was captured by

fleet f
pi→j,f probability of tag history: released at year i and reported at

year j by fleet f

12



if one had three release years and J recapture years, data matrix and release
counts would be following:

M =

 0 m12 m13 m14 . . . m1J

0 0 m23 m24 . . . m2J

0 0 0 m34 . . . m3J

 , R =

 R1

R2

R3

 . (2)

Note that later in the developed fish mortality model the indexing of the years
is different such that the diagonal holds the recaptures of the release years.

Let pj stand for the probability of capturing a particular animal in the year
j and φj for probability of a particular animal surviving the year j given that
the animal is alive at the end of the previous year j − 1. We assume that these
probabilities do not vary between the animals.

The likelihood

L(φ,p, R,M) ∝ ∆(φ,p)

I∏
i=1

J∏
j=i+1

(
φipj

j−1∏
k=i+1

φk(1− pk)

)mij

(3)

is a multinomial, where ∆(φ,p) =
∏I
i=1 χ

νi
i stands for the probability of animals

being never recaptured after the release year and νi = Ri −
∑J
j=i+1mij is

the number of those animals. The term χi is a probability that an animal is
not subsequently captured given that it was living at the end of year i. Note
that χi depends on both of the survival probabilities φi, . . . , φJ−1 and capture
probabilities pi, . . . , pJ . In (3), the animal has to survive the first year (thus
term φi) but it cannot be captured. After that, the survival of the animal
is a product over the years after the release year i and before the recapture
year j, so the product term

∏j−1
k=i+1 φk(1 − pk). Here, the animal survives if it

does not die (term φk) or become recaptured (term 1 − pk). In addition, the
capture probability pj of the capture year j is needed to fulfill the probability
from the release to the recapture. Note also that the likelihood contributed by
each release i is multinomial. Thus, CJS-model assumes that each release has
multinomial observations. An extension allowing overdispersion is given at the
end of Section 3.2.

In order to sample from the posterior distribution, we will derive conditional
distributions called full conditional posteriors. These full conditionals may then
be used in the Gibbs sampling algorithm. The theory of Gibbs sampling is
omitted here, but we refer the reader to Gelman et al. (2004) and Robert and
Casella (2004). Let us first define independent beta priors

φl ∼ Beta(α, β), l = 1, . . . , J − 1,

pl ∼ Beta(a, b), l = 2, . . . , J.

Now, the posterior full conditionals for φl are up to the scaling factor

π(φl|φ(l),p,R,m) ∝ φα−1l (1− φl)β−1∆(φ,p)φrl
∝ ∆(φ,p)fbeta (φl;α+ r, β) ,

l = 1, . . . , J − 1,
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where r =
∑l∗
i=1

∑J
j=l+1mij and l∗ = min(l, I). Here fbeta (x; a, b) is a prob-

ability density function of a beta distribution for x with parameters a and b.
We denote by φ(l) a vector of φ omitting φl. The notation of p(l) is analogous.
Similarly, the posterior full conditionals for pl are

π(pl|φ,p(l),R,m) ∝ ∆(φ,p)fbeta (pl; a+ r, b) ,

l = 2, . . . , J.

The full conditionals may now be used in the Markov Chain Monte Carlo
(MCMC) computation to sample from the posterior.

3.2 Further development of the model

In the field of fisheries modelling, it is a practice to use instantaneous mortality
rates rather than survival probabilities. Because we want to estimate these
instantaneous rates, the CJS-model has to be modified to make this possible.
Also, we need to model how data are observed. First, CJS-model assumes
that tags cannot be lost. We will add a yearly tag loss probability to the
model. Second, because tags are reported by volunteers gaining only a small
revenue, returning of tags will affect our understanding the true fish mortality.
We will add a tag reporting probability to the model. Estimation of these
two new parameters may be questionable using only the data at our disposal.
Parameter estimation is studied comprehensively in Chapter 4. Informative
prior distributions for these variables are set to incorporate into the model all
knowledge we have.

Further, the fishing effort data will be added to modelling. Fishing effort
gives information about the variation of fishing intensity, so it makes sense to
use the fishing effort data.

Model reparametrization

Let us for a moment consider such fish cohort that only mortality affects it, so the
population size is decreasing. Now, one may describe the expected population
growth (decay) using equation dN

dt = −ZN , where N is the number of fish in
the cohort and Z > 0 is the instantaneous (total) mortality rate. Assuming that
Z is constant between the times t and t + 1, so the solution of the differential
equation is Nt+1 = e−ZNt. The total mortality is composed of an instantaneous
fishing mortality rate F and an instantaneous natural mortality rate M such
that Z = F+M . The fishing mortality is a mortality component of the died fish
caused by fishing. Natural mortality is the non-fishing mortality, which usually
accounts mortality due to illnesses, high age and predation. In the later text,
we will refer to these instantaneous rates as fishing mortality, natural mortality
and total mortality. The total mortality Zk of the year k is linked to the survival
probability

φk = P (survive the year k|was alive at the end k − 1) = e−Zk . (4)

14



Now, we can parametrize the model such that it incorporates tag shedding,
fishing and natural mortalities, and tag reporting. We need probabilistic equa-
tions, which connect the fish survival and capture probabilities to these param-
eters. For now, let us leave out the effect of fish age and yearly variation from
these equations and consider those later. Also, we start with an assumption
that all the fishermen are similar, so there is only one fleet of fishermen in the
model. The reader may follow the idea of the following paragraph from Figure
5.

First, let us denote the one-year tag shedding probability as pshed and tag
retaining probability as pretain = 1−pshed. We may use the simplifying assump-
tion that a tag can be lost only once in a year and in the beginning of a year.
Now, if the tag is not shed, then probability that fish is alive after one year and
has a tag attached to it is φpretain = e−Zpretain, see (4). Now, the probability
that a fish dies with a tag attached becomes (1−φ)pretain = (1−e−Z)pretain and
the probability that a fish dies because of fishing given that the fish has died by
any means is P (fish was killed by fishing|fish was killed) = F

Z . Then, the prob-

ability of death caused by fishing with a tag attached is F
Z

(
1− e−Z

)
pretain.

Similarly, the probability to die naturally with a tag is M
Z

(
1− e−Z

)
pretain.

Now, we need to have a probability of tag being reported given that a fisherman
has captured a tagged fish. Let preport stand for this probability and assume
that the reporting probability does not vary between the fishermen. Given that
fish has died by fishing, the probability of observing a tag in data becomes
F
Z

(
1− e−Z

)
preportpretain, which means that a fisherman reports the recaptured

tag. The probability that a fish is captured with a tag, but not reported is
F
Z

(
1− e−Z

)
(1− preport)pretain. Thus, adding a reporting probability only sep-

arates the event of capturing to two events. Now, the derived probabilities of
mortality events are given in the equations (5)-(9)

P (captured and reported) =
F

Z

(
1− e−Z

)
preportpretain (5)

P (captured but unreported) =
F

Z

(
1− e−Z

)
(1− preport)pretain (6)

P (uncaptured and survived) = 1−
(
1− e−Z

)
= e−Zpretain (7)

P (uncaptured and died naturally) =
M

Z

(
1− e−Z

)
pretain (8)

P (tag was shed) = pshed = 1− pretain. (9)

These are multinomial probabilities of possible tag faiths during one year, if M
and F are mortality rates for one years time period, and pretain is a probability
that a tag does not shed within one year. Also, other time resolutions may be
used in connection of this parametrization, if the above-mentioned parameters
are changed according to a time resolution used. By adding probabilities to-
gether, one may check that the sum of the five probabilities is one. In data,
only events from equation (5) can be observed. Those fish which remain alive
and are not captured may be observed in next year, see (7).

It is impossible to observe events from (6), (8) and (9) and it is impossible to
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(9)

(8)

(6)

(7)

(5)

1− pretain
pretain

1− e−Z
e−Z

M
Z

F
Z

1− prepprep

Figure 5: Probability graph of parametrization used in the model. Parametriza-
tion follows possible tag events within one time period (e.g. year). The rounded
boxes are outcomes and the equation according to the outcome is referred below
the box.

discriminate between these three using only mark-recapture data without double
tagging. Single tagged mark-recapture data does not hold information about the
reporting probability preport and tag retaining pretain, so additional information
becomes crucial, which may come either from submodels with additional data
or prior distributions.

Use of fishing efforts

Fishing effort may be linked to the model using its relation to fishing mortality
Ff,k for the fleet f in the year k

Ff,k = qfEf,k, (10)
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where qf is the catch probability also known as the catchability coefficient of
the fleet f having effort Ef,k. For example, if Ef,k is fishing effort of gill nets
and has the unit of effort in gear days, then qf is a probability of catching one
tagged fish using one net one fishing day.

Of course the assumption is rather simplifying in many ways. First, because
qf is a probability, it assumes that one can maximally capture only one fish per
unit of effort. To get rid of this limiting assumption, we may allow qf to have
values larger than one. However, in many cases the yearly fishing effort is tens
or hundreds of thousands per year and recapture counts yield Ff to be within
the range from 0 to 2 with high probability. In this case, the assumption of qf
is not very restrictive because qf tends to have a very small positive value.

We will also assume that the catch probability is constant over the whole
study time period. This is equivalent to thinking that all the variability in the
fishing mortality Ff origins the variation of fishing effort. However, we may
allow qf to be increasing over time, if there is a reason to believe that fishing
methods have developed during the time period.

Multiple fishing fleets

Estimation of separate fishing mortalities is possible also in the case of multiple
fleets. A fleet may consist of e.g. professional fishermen or even gear type,
such as line gears. To use fleet-specific fishing mortality rates, the appropriate
variable indicating the fleet is needed to tell via which fleet a recaptured tag has
been collected. If that is available, then we may build a data matrix

M = [M1,M2, . . . ,Mc] (11)

such that it is build from fleet specific data matrices Mf , f = 1, . . . , C. A fleet
specific data matrix Mf holds recaptures from the fleet f over the whole study

period. Row sums
∑J
j=1mf,ij sum up to the count of recaptures reported by

fleet f from the release i. Instead of using one single fishing mortality rate F
and one natural mortality rate M , we will estimate separate fishing mortality
rates F1, . . . , FC for each of the fleets and one natural mortality rate M . In that

case, the instantaneous total mortality rate becomes Z =
(∑C

f=1 Ff

)
+M . We

may also need to assume that tag reporting probability preport varies between
the fleets. In that case we have multiple tag reporting probabilities preport,f
for fleets f = 1, . . . , C. Compared to the earlier parametrization in equations
(5)-(9), the essential changes are that, in the multiple fleet case, (5) is replaced
by set of C equations such that

P (captured and reported by fleet f) =
Ff
Z

(
1− e−Z

)
preport,fpretain.

Of course, (6) is similarly replaced by C equations

P (captured but unreported by fleet f) =
Ff
Z

(
1− e−Z

)
(1− preport,f )pretain.
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previous

year
next

year

Figure 6: Directed acyclic graph describing the model.

Likelihood function

Now, because both the data matrix and model parametrization have changed,
we need to rewrite the likelihood according to data, compare with equation (3).
Let us now denote

pobsf,k,a =
Ff,k
Zk

(
1− e−Zk

)
preport,fpretain,a, where Ff,k = qfEf,k,

being the probability of observing a fish in the data set of fleet f at the year k
in age a given that the fish was alive and had a tag attached at the end of the
previous year. Also, denote

pstayk,a = e−Zkpretain,a

being the probability of tag staying available in the fish population for fishermen
to capture when fish is in the age group a and the year is k. Note that the age
group a is a function of release and recapture years a(i, j) = min(U, j − i + 1)
where U is the total number of age classes. Now, utilising the presented contri-
butions (reparametrization, multiple fleets, reporting and retaining probabilities
and the use of effort data) to the CJS-model in this chapter, the obtained like-
lihood is

L(M|Ef , R, preport,f ,pretain, qf ,M) ∝
I∏
i=1

q
Ri−

∑C
f=1

∑J
j=1mf,ij

i

C∏
f=1

J∏
j=i

(pi→j,f )
mf,ij ,

(12)
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where qi =
(

1−
∑C
f=1

∑J
j=1 pi→j,f

)
stands for probability of not observing a

tag in the data matrix and pi→j,f is a probability of such fish life history, that
a fish is released in the year i and reported being captured with tag by fleet f .
Therefore, we define

pi→j,f =

{
pobsf,i,a(i,i) where j = i

pobsf,j,a(i,j)

∏j−1
k=i p

stay
k,a(i,k) where j > i.

The relationships between data and the variables are described in the directed
acyclic graph in Figure 6.

Modelling with missing recapture data

If the fleet of the returned tag is not known, the missing data problem arises.
With data in hand, we are heading a problem where recreational fleet is divided
into two gear groups: lines and nets. In that case, quite often people do not
report what gear was the tagged fish captured on, and so we do not know from
which fleet the tag comes from. To solve this problem, we need to think what
type of missing data is. We will assume that missingness is Missingness At
Random, which means that probabilities for nonreporting of a gear type used
are the same for both fleets (recreational lines and nets). This is done because
it is not easy to know how missingness in this context behaves. Also, it is better
to assume the type of missingness and try to use all the recaptures, even the
ones which did not contain gear information. This reduces systematic errors on
the posteriors of fishing mortality rates.

Modelling of missing effort data

Because of missing values in the effort data, we modelled the effort of fleet f
using a state-space model

Ek ∼ logN (µk, 1/σ2
k) (13)

µk ∼ N(µk−1, 1/σ̃
2) (14)

σ2
k = log(CV2

k + 1) (15)

and for these prior distributions were set

CVk ∼ logN (a, b) (16)

1/σ̃2 ∼ Gamma(0.01, 0.01) (17)

where a and b are prior parameters and σ2
f was fixed using its empirical estimate

σ̂2
f . Here, the efforts Ek are log-normally distributed and may be observed or

missing. The latent structure of expected values µk of efforts allows imputing
the missing efforts using information about its neighbour values and variability
between the neighbours. Note that instead of actual variance parameters, the
distributions having parametrization via inverse variance parameters are used.
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Unobserved variables

The tag reporting and tag shedding probabilities, preport and pshed are variables,
which cannot be estimated using the mark-recapture data only. If applicable
data sets are available, modelling of these variables using separate model (sub-
model) is possible. If not, then we may impute these variables using prior
distributions elicited from experts or based on earlier studies.

Adding overdispersion

Overdispersion of the observed count data, compared to the variance of multi-
nomial distribution, may be modelled by adding variability to cell probabilities
of the multinomial distribution. The use of Dirichlet distribution to increase
variation is natural because Dirichlet distribution is conjugate of multinomial
distributed observations. Note, that a vector valued variable X ∼ Dirichlet(θ)
is a vector of probabilities such that the sum of its cell values is one.

Let us denote pi = (pi→1,f=1, . . . , pi→J,f=1, . . . , pi→1,f=3, . . . , pi→J,f=3) be-
ing the probability vector of observed recaptures from the release i computed
from the values of qf , M and preport,f given effort data Ef . Now, we can add
uncertainty, or ”random effects” using

(psamp
i )T ∼ Dirichlet(θODpi) (18)

mi
T ∼ Multinomial

(
(psamp
i )T

)
(19)

where θOD defines how much overdispersion is allowed. The marginal expecta-
tions of the Dirichlet distribution are linked to pi. A row vector mi is a row
of release-recapture matrix M and (psamp

i )T a probability vector sampled from
the Dirichlet distribution.

As θOD →∞ then overdispersion vanishes to zero. We have to assume that
parameters of Dirichlet distribution are positive. We may also assume that each
of the parameters is at least 1 so that the marginals of the Dirichlet distribution
have non-zero modes. The former restriction leads to θODpij > 1 ⇒ θOD >

1
min pij

.

The overdispersion may be used with Bayesian computation if the prior
distribution of θOD is set, e.g. θOD ∼ Uniform(a, b) where a > 0 and b > a
is some value large enough. Implementation code of overdispersion is given in
Appendix C.

3.3 Prior consideration

Now, the model is defined, and we can calculate the likelihood (12). Because of
the missing data in effort data, the state-space model will be used simultaneously
with tagging data model to impute the missing effort data. Simultaneous use of
the models allows to update the missing efforts using both effort data and also
tagging data. To provide all-embracing information about fish mortality using
this model, the prior distributions for the model parameters are needed. When
priors and likelihood with data are available, final posterior estimates can be
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computed. The model may be estimated using the MCMC computation, which
gives a sample from the posterior distribution. From the sample, it is possible
to draw plots, calculate e.g. mean, variance and quantile estimates.

Prior distributions needed for inference

Because we want to combine all the information available using this design, the
informative prior distributions need to be set. If the goal were to estimate what
information the tagging data alone gives about the mortality, then we would
prefer using the uninformative or vague priors. We need prior distributions for
model variables M , qf , preport,f and pretain,a.

A prior distribution for the natural mortality rate M was obtained from a
modified version of a Bayesian meta-analysis model for biological parameters
(Pulkkinen et al., 2011) that takes into account the correlations between the
parameters. This provides a prior distribution

M ∼ logN (µ = −1.65, τ = 5.2) (20)

where τ is an inverse variance parameter of log-normal distribution.
The priors of catchability coefficients for the three fleets were defined using

expected values of harvest rates of fleets H1, H2, H3, which were estimates deliv-
ered by the experts. Here, the harvest rate Hf for the fleet f is a proportion of
the population harvested within one year. Thus, using the idea of Michielsens et
al. (2006) the catchability priors were set using the relation between the harvest
rates and catchability coefficients such that

qf =
− log(1−Hf )

Ef,init
, (21)

where Ef,init is an initial effort and Hf is the harvest rate such that

H1:3 ∼ Dirichlet(θ1:3).

Here θ1:3 elicited from experts and θf/(
∑
k θk) = E[Hf ]. The key point behind

the use of harvest rates for formulation of catchability priors is that it defines
one’s prior belief such that the harvest rate induced by priors of catchabilities lies
within range of [0, 1]. If independent prior distributions for all the catchability
coefficients were set, then prior would allow harvest rate to be larger than one,
which means that we are fishing more fish what exists in the population.

The initial effort should be e.g. previous effort before the beginning of the
study period. In this case, such an effort has not been measured, so we decided
to use average of the measured efforts as an initial effort. This decision may be
criticized, but some value for the initial effort has to be given. Also, it is better
to set an initial effort to have some value which is in accordance with the data,
rather that fixing some arbitrary value, which might effect final results against
the data.
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For fleet-specific tag reporting probabilities the prior distributions elicited
from experts are

preport,prof ∼ Beta(3.013, 4.867) (22)

preport,recr net ∼ Beta(2.511, 1.846) (23)

preport,recr line ∼ Beta(4.346, 2.486). (24)

The experts were fishery biologists who have background in fish biology and
ecology for at least two or three decades.

The prior distribution of tag shedding is based on the double tagging ex-
periments of North-American Walleye (Kallemeyn, 1989) which is the closest
relative species of pike perch. The double tagging data was reanalyzed using
Bayesian methods, and the Beta-distributed posteriors were scaled by multiply-
ing the posterior parameters by 0.5. This was done because the species and the
environment are not the same, so the uncertainty of the pike perch tag shedding
is larger than is in tag shedding of Walleyes. The tag shedding priors used were

pretain,a=1 ∼ Beta(14.790, 72.210) (25)

pretain,a=2 ∼ Beta(28.536, 53.464) (26)

for the first age group being the pike perch spending their first year after the
release, and the second age group being the rest.

Eliciting priors from experts

We elicited prior distributions for each of the three fleets’ average reporting
probabilities from three experts. From each of experts, three beta-distributions
were elicited, and experts’ opinions were pooled using the average over the
elicited parameters

α =
1

3
(α1 + α2 + α3) β =

1

3
(β1 + β2 + β3) (27)

of the beta-distribution. This is what is called simple mathematical aggregation
in O’Hagan et al. (2006), chapter 9.

The question pattern was carefully planned based on work of (O’Hagan et al.,
2006, chapter 6). The mode, median and quantiles of 25 % and 75 % were asked
from the experts. The beta-distribution was fitted to elicited quantiles using
self-written R-code (R Core Team, 2013), and the elicited prior was plotted,
showed and interpreted to experts by a statistician. If the experts found out
that the distribution did not represent their belief, the quantiles were tuned to
give satisfying distribution.
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4 Simulation experiment

Four models, called A, B, C and ”final model”, are constructed and used in a
simulation experiment in order to study the performance of suggested modelling.
The main objective of this chapter is the estimation of parameters when tag
shedding affects observed recapture counts. Implementing and estimation of
the tag shedding is problematic because it effects posteriors of natural mortality.
If the posterior of natural mortality is changed, so are the posteriors of other
parameters, especially professional catchability and thus also professional fishing
mortality. The available mark-recapture data do not contain information on tag
shedding. Hence external knowledge is needed in the hierarchical modelling.

Let us now define the models A, B, C and final model. In the model A, no
variables are fixed, but it is assumed that tags cannot be shed, which means
that pretain,a = 1 for all a. Model B is a complete model with freely varying
yearly tag shedding probability, but assuming that the tag shedding probability
is the same for all age groups: pretain,i = pretain,j for all i and j. Model C uses a
different approach: it includes tag shedding using similar parametrization used
for the natural mortality rate. Final model is an extension of model C having
all aspects of the true data.

For each model, two data sets are simulated from the appropriate process.
One of the two data sets will have yearly release count in the same scale com-
pared with the true data, so Ri = 1000 for all i. Another data set is something
which we could call highly informative, having extremely high release counts,
Ri = 100000 for all i. This allows us to analyse the amount of uncertainty
and systematic errors in the estimators, and also allows us to show how the
model works for an informative data set. Also, it might be that the magnitude
of systematic error is different having different release counts. An appropriate
process is such a process where the assumptions of the model holds, but it still
represents our understanding on the phenomena of tagging experiments.

The performance of estimation is studied visually using bias plots where
each variable has a boxplot of bias. Bias is the deviance of the estimator from
the value used in simulation. If the deviance is 0, then we say that estimation
is unbiased. The aim here is to find such bias plots for which the median of
the shifted posteriors is close to zero for all the most significant parameters.
The most important parameters for the objective of this thesis are fleet specific
catchability coefficients and natural mortality. Tag reporting probabilities are
secondary because those may be treated as nuisance parameters, and will not
be applied in the forthcoming study.
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Model A: biases of estimates
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Figure 7: Simulation experiment for model A, assuming pshed = 0 when the true
tag shed rate is the same. Catchability coefficients q̇ are multiplied by 106 to
make plot readable. The variable names in bias plots are replaced with the ones
used in programming: q.pro stands for the qpro, q.recr.net qrecr net, q.recr.line
qrecr line, p.report.pro prep,pro, p.report.recr.net prep,recr net and p.report.recr.line
prep,recr line.
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Figure 8: Simulation experiment for model A, assuming pshed = 0 when the true
tag shed rate is pshed = 0.18. Catchability coefficients q are multiplied by 106

to make plot readable.
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4.1 Simulated data

The simulated data will not have any missing values in the effort data. This is
to cut down the length and complexity of the simulation experiment. Missing
values are allowed in the gear reporting data in the final model.

The true values used in simulations are preport,pro = 0.55, preport,recr lines =
0.8 (0.75 for model B), preport,recr nets = 0.75, M = 0.2, qprof = 5.5 × 10−7,
qrecr nets = 2.0 × 10−7, qrecr lines = 1.0 × 10−7. For the final model, the tag
shedding probabilities were 0.18 and 0.34 for the first year in the water and
other years, respectively. In the bias plots, Figures 7, 8, 9, 10 and 11, the
catchabilities are multiplied by ratio 106 in order to ease readability of plots.

The priors used in the simulation experiment were the same as the ones
used in the modelling of the actual data, see Table 6. For the models A, B
and C tag shedding prior of ”pshed[1]” was used and for the ”final model”, the
priors for both age groups (given in Table 6) were set. Prior distributions of
natural mortality, reporting rates and tag shedding are informative, but priors
of catchability coefficients are semi-informative.

4.2 Interpretation of simulation experiment results

In the model A, where the assumption of no tag shedding holds, the estimation
works very well for all parameters, see Figure 7. Introducing tag shedding, the
bias in the natural mortality M is visible in Figure 8a. Bias of M also causes
some minor upward bias to other variables.

For the model B, we simulated data using tag shedding probability 0.18 and
tested different assumptions in the model used in the estimation. We tried:
fixing the tag shedding to the known true value (Figure 9a), using informative
prior on the tag shedding (Figure 9b) and fixing the tag shedding to the zero
(Figure 9c). Out of these three attempts, the first one gives very poor posteriors
the second one seems to be the best though still having significant bias in M ,
and the third one is almost as good as the second one.

In the experiment of Figure 9b, the tag shedding rate becomes estimated
close to zero, so the model is very close to the model in the experiment of
Figure 8. The bias plots of the two models are very similar.

In the model C, the tag shedding was parametrized as an additional natural
mortality rate. To write this formally,

pshed ∼ Beta(ashed, bshed) (28)

M ∼ logN(µM , τM ) (29)

Mtagshed = − log(1− pshed) (30)

Mbind = M +Mtagshed, (31)

where pshed is probability of tag shedding and M is instantaneous natural mor-
tality rate. All the information for the tag shedding probability comes via its
prior in (28). Binded natural mortality Mbind is the natural mortality seen in
the data including the tag shedding and natural mortality, and M is the true
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natural mortality causing fish to die. Here, Mbind is now used in the model
parameterization instead of M in equations (5)-(9). This parametrization is
perhaps rather more experimentally than theoretically argumented.

Now, we are heading an issue that two natural mortality rates might be
confounded. However, one decided to try how would this approach work. It
was found out that if the release counts are 1000 per year, one still has bias
and that bias takes place in the professional catchability coefficient. If we use
extremely high release counts, then the bias approaches towards the natural
mortality rate. So, this model seems not to be any better than the best among
the earlier models since our total mortality estimates become biased.

The final model contains all aspects of the model used in the next chapter
except that, for this case, we assumed that no missing effort values exists. Com-
pared with the model C, the gear nonreporting of recreational fleets was added
and so was tag shedding having two age groups instead of one. This can be
seen as a very realistic model for fish mortality. The model seems to be almost
unbiased for the catchabilities and natural mortality in the case of 1000 released
fish per year, see Figure 11b. However results with 100000 released fish gives a
bit larger biases, but still the biases are rather small compared with the ones of
models A, B and C.

All in all, models A, B and C did not give very good results in the sense that
the posteriors of interesting parameters have systematic errors, but one truly
realistic model with very small systematic errors for the important variables
was found. If some other models are used, the biasedness of those models must
be studied using simulation experiments similar as the one represented in this
chapter. If the results of the model seem to be biased, it might be possible
to use ad-hoc methods to reduce the existing bias. This means shifting the
posteriors by using the amount of the bias studied. However, this is risky since
the simulation studies do not show how the bias develops depending on the
model variables. For some case, this might be better than straightforwardly
applying the estimated posteriors.
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Model B: biases of estimates
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(a) Tag shed rate was fixed to the known true value in the estimation.
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(b) Tag shed rate was not fixed but informative prior was used.
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(c) Tag shed rate was fixed to pshed = 0.

Figure 9: Simulation experiment for model B, having different assumption in
the estimation, while true tag shed rate is pshed = 0.18. Catchability coefficients
q̇ are multiplied by 106 to make plot readable. Plots on the left hand side have
Ri = 100000 simulated released fish and on the right hand side Ri = 1000.
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Model C: biases of estimates
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Figure 10: Tag shed rate was included as additional natural mortality rate
through Mtagshed = − log(1− pshed).

Final model: biases of estimates
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Simulation of Ri = 100000 released fish.

Final model: biases of estimates
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Simulation of Ri = 1000 released fish.

Figure 11: Simulation experiment for final model, where the tag shedding prob-
abilities are age group specific. Catchability coefficients q̇ are multiplied by 106

to make plot readable.
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5 Results

This chapter represents the final results in the form of marginal posteriors and
their interpretations. In addition, model comparisons, model validation and
sensitivity analysis are included into this chapter. First, differences between
the modelling with the true data compared to simulation experiments in the
previous chapter are discussed.

We intend to compare four models resembling the final model of the previous
chapter. The models differ from each other in tag reporting probabilities and
overdispersion. More precisely, having either one common or two separate recre-
ational tag reporting probabilities, and the ones either having or not having the
overdispersion compared to the multinomial distribution. Overdispersion was
described in detail in Section 3.2.

5.1 Modelling of real data

In the real data, as similar observational data sets in general, data often have
to be modified. From the data applied in this work, we did remove some of the
professional reported recaptures. The reason was that some of the professional
fishermen tend to report tags in bunches of tens, and these people do not usu-
ally report the recapture date. This unreporting could be modelled as interval
censoring, but it is problematic in the case of multinomial model when data
consist of cell counts. Practically these only tell us that the fish were captured
by professionals, but almost no information about when the fish was captured
exists. This is very problematic because we do not even know which year the
fish was captured. Imputation of these values would be possible, but it would
not give much additional information for the final results. Imputation would be
quite difficult having model basing on the multinomial observations.

It is commonly known that tag shedding in the waters is usually different
during the first year compared to the rest of the years (e.g. Cadigan, Brattey,
2006).

5.1.1 Model comparisons

The deviance information criterion (DIC) version proposed by Spiegelhalter et
al. (2002) was used in the model comparison.

Four models are compared. Let us call them models 1, 2, 3 and 4 so that
these cannot be confused with models in the previous chapter. Model 1 has the
same reporting rate for recreational fishing fleets and no overdispersion. Model
2 is similar to model 1 but allows overdispersion. Models 3 and 4 have separate
recreational fleet reporting rates. Model 4 has overdispersion while model 3 has
not.

Referring to table 4, models 1 and 3 seem to give the lowest DIC values,
935.8 and 936.0, respectively. The difference of the values is just 0.2, so we
can not distinguish the two. These two models describe the data equally well.
This conclusion based on the idea that likelihood ratios of the models describing
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Table 4: Deviance information criterion (DIC) and effective number of param-
eters (pD) values given by JAGS for the four models. Models without overdis-
persion (1 and 3) are supported the most but certain conclusions about the
distinguishing the models cannot be drawn.

Model pD DIC

Model 1 36.7 935.8
Model 2 184.7 940.4
Model 3 36.1 936.0
Model 4 187.6 943.6

two hypotheses H0 and H1 is exp((DIC0 −DIC1)/2) (Lunn et al., 2012) so for
models 1 and 3 it yields a likelihood ratio of 1.10. Comparing the models 1 and
3 to other two models, the smallest likelihood ratio is between models 3 and 2:
9.49. Thus, the assumption of model 1 is 1.1 times more likely than model 3,
and these two models are at least 9.49 times as probable than other two models.
Data does not support overdispersion.

5.1.2 Diagnostics and model checking

All models were fitted using MCMC methodology implemented in JAGS. The
convergence of MCMC chains were inspected visually using autocorrelation plots
and chain plots. Some of the autocorrelations and chains for Model 1 are plotted
in Figure 12. In addition, also Brook-Gelman-Rubin convergence diagnostics R̂
were used. The chain has converged if R̂ < 1.05, but in the final runs we aimed
at having R̂ less than 1.01. The Brooks-Gelman-Rubin convergence diagnostic
values are given in Table 5.

The fit to data was inspected using posterior predictive values plotted with
respect to actual observations. Observations are counts, so the use of residual
plots were avoided. The data matrix consists of (count of years) × (count of
fleets + 1) × (count of releases) cells, so in total 16× 4× 7 = 448 count values.
Presenting such a vast number of values is not reasonable in the thesis, but can
be visually inspected when plotted as a multipage image. Predictive values of
a single release year, the year 1997 are given in Figure 13. The release years
1997 fit to data is typical to this data. Some of the years give better fits than
the others. The worst fit is in the professional recaptures from the release year
1999 and the recapture 1999, being 80 reported recaptures as we were expecting
reported recaptures to lie in a range of [27, 53] (95 % credible interval). In total
96.6 % of the observed values lie within 95 % credible interval. This indicates a
good fit to data.

Also, correlation of samples of posterior estimates may indicate how the
model fits to data or reveal issues in the model formulation. For example, if
two variables have a negative correlation close to -1, it indicates that perhaps
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Figure 12: Autocorrelation and chain plot of natural mortality M , professional
catchability q.pro and recreational lines catchability q.recr.line.
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Table 5: Brooks-Gelman-Rubin R̂ convergence diagnostics show that Markov
chain has converged (R̂ < 1.05). Variable n.eff shows the effective number of
sampled observations from posterior distribution.

Variable R̂ n.eff

M 1.002 2300
Mtagshed 1.002 1600
p.report.pro 1.009 730
p.report.recr.line 1.001 3400
pshed 1.001 6000
q.pro 1.009 770
q.recr.line 1.002 2100
q.recr.net 1.001 5000
scale 1.001 6000
tau.process.line 1.001 6000
tau.process.net 1.001 6000

only the sum of the two variables is estimable. On the other hand, high pos-
itive correlation would reveal that the two variables are linked to each other.
Bivariate posterior plots of Model 1 are given in Figure 14. The plot describes
negative correlation between the professional catchability and natural mortality
and nonlinear relations between the catchability coefficients and reporting rates
the fleets. Negative correlation of the first-mentioned may be understood as fol-
lowing: if professional reporting rate goes to zero, then all the mortality caused
by professional fleet becomes estimated in the natural mortality rate because
no information about the professional recaptures. Thus, the source of corre-
lation may be because low reporting rate. Nonlinear relations of fleet-specific
catchabilities and reporting rates can be understood by reminding that expected
recaptures of a particular year and fleet is proportional to nonlinear function of
catchability coefficient and reporting rate E(mf,ij) ∝ (1− exp(−qfEf )preport,f
causing a nonlinear relation between the two variables. Even though now we
perhaps have an intuitive understanding about the causes of posterior correla-
tions and relations, this does not guarantee that the problems in the estimation
could not occur. That is why the simulation study of Chapter 4 is important.

According to experts, the estimated posterior probability distributions are
reasonable. For the Model 2, which have separate tag reporting probabilities
for recreational line and net fishing fleets, the experts commented that the two
reporting probabilities should be close to each other. This is supported by the
knowledge that many of the recreational fishermen tend to use both net and line
fishing methods, so much of persons are the same (Moilanen, 2004, p. 16). The
order of the catchabilities is as expected, so the professionals have the highest
catch probability per unit of effort, and next comes the recreational nets and last
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recreational lines. Experts were not capable of telling the magnitude between
the fleet-specific catch probabilities, but they said that the professional catch
probability could be much higher than the others. The argument of this is that
professionals use drift nets to gain knowledge about the most intense movement
routes of pike perch.
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Figure 13: Predictive values alongside observed values for the release 1997.
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Figure 14: Pairwise plots of 500 samples from posterior distribution. Negative
correlation between the natural mortality M and professional fishing mortality is
visible. Also, reporting rates are nonlinearly related to catchability coefficients.

5.2 Posterior distributions and interpretations

The final posterior distributions are described in Figures 15-17. The black lines
of plots are posteriors and dotted red lines are priors. In the following text,
interpretations are given in high detail.

Figure 15 shows instantaneous fishing mortality rates by fleets and the in-
stantaneous total mortality rate. Most of the fishing mortality is induced by
professional fishing. The fishing mortalities of the two recreational fleets for the
years 1997 and 1999 seem to be quite different compared to their previous and
following years. The reason to this is: the recapture counts for those fleets are
very high, and the fishing effort of the mentioned years is missing, which has
been stochastically imputed using the posterior predictive distribution. In the
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light of knowledge we have and, given the model, the estimates of these are the
best possible.

Figure 16 gives posterior distributions of instantaneous natural mortality
rate and fleet-specific catch probabilities. Independent prior distributions were
used to produce these catchability estimates. One should be careful when inter-
preting the catch probabilities: those can not be compared if the unit of effort
is different, as it is in between the professional and recreational efforts. The
interpretation of catch probability is the following: probability of capturing a
single tagged fish using one unit of effort (e.g. one day of fishing). Although the
prior distribution of natural mortality could seem to be quite restricting, the
informative prior distribution is justified by having a lot of information about
the variable from earlier studies.

Figure 17 describes the fleet-specific reporting probabilities: the probability
of reporting a tagged fish, given that the fish with a tag was captured by the fleet.
The recreational gear reporting rate describes a probability of reporting the gear
used to capture the fish given that the fisherman was recreational fisher. We do
not have professional gear reporting in the model because all the professional
gear-specific fleets were treated as one combined fleet in the modelling.

To interpretate these fishing and natural mortality estimates, the most nat-
ural way to do it is to transform the mean estimates to probability scale. Cu-
mulative probability plot of mortality causes is presented in Figure 18.

According to the final estimates, the yearly average total mortality of tagged
Archipelago pike perch is relatively high, as high as 43.2-55.0 % while the pos-
terior standard deviances are in the range of 4.5-5.6 %. It must be emphasized,
that the estimate is sensible to the assumptions made: fish are at least two
years old (as were the released fish), and the estimated rate is the average over
the ages of fish (no age-specific mortality rates were estimated). The estimate
mostly represents the mortality of 2-4 years old pike perch, which are about
31-60 cm long.

Also, one wants to make clear that it can not be interpreted whether or
not the fishing intensity is too high or low. The risk of population collapse
depends not only on mortality, but also fecundity and environmental factors.
As far as I have understood, the biologists say that the Archipelago is relatively
eutrophicated, which means that there is a lot of nutrition available for pike
perch. Also, pike perch reproduction is currently high. Those facts support the
idea that even this high mortality might not be too much. In the further work
ecologists could be able to produce estimates about suitable fishing intensity
levels and give regulation recommendations.
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Figure 15: Yearly instantaneous fishing mortality rates by fleets and instanta-
neous total fishing mortality rate.
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Figure 16: Posteriors of catchabilities and natural mortality rate (black line)
and priors (dotted red line). 36
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5.3 Sensitivity analysis

The idea of sensitivity analysis is to show, which variables are sensitive to the
used prior distributions and what is the effect of used priors. It is also possible
to study sensitivity to data values and model assumptions, but here we have a
look at the effect of the prior distributions only.

It was stated earlier in Chapter 4 that the estimation works well if there
is no tag shedding. However we do have tag shedding included into a model
causing some bias. We intend to study the sensitivity of Model 1, which is
the final model we have. Model 1 implements tag shedding as an additional
natural mortality component, see (28)-(31) in Chapter 4. It was assumed that
the reporting rates of the two recreational fleets are equal, so we have only two
reporting rates. Posteriors of Model 1 were described and interpreted in Section
5.2.

Sensitivities to prior distributions of catch probabilities qprof, qrecr net, qrecr line,
tag shedding probabilities pshed, natural mortality rate M and reporting prob-
abilities preport,prof, preport,recr are studied. One will define alternative prior dis-
tributions (alterprior for short) for all the variables whose sensitivity is to be
studied. The two posteriors produced using the actual prior and the alterprior
of the variable in question will be compared. If these posteriors are similar then
we say that the estimation using this model and this data is not sensitive, or
is insensitive, to prior distributions used. Similarity is studied using overlap-
ping posterior density plots. The priors and alternative priors of the variables
are presented in Table 6. The plots related to this section (four pages) are in
Appendix A.

Table 6: Priors and alternative priors for the variables inspected.

Variable Prior Alternative prior

M logN (µ = −1.65, τ = 5.2) logN (µ = −0.65, τ = 5.2)
p.report.pro Beta(a = 3.01, b = 4.87) Beta(a = 5.12, b = 2.76)
p.report.recr Beta(a = 3.43, b = 2.17) Beta(a = 4.48, b = 1.12)
pshed[1] Beta(a = 14.79, b = 72.21) Beta(a = 3.70, b = 83.30)
pshed[2] Beta(a = 28.536, b = 53.46) Beta(a = 7.13, b = 74.87)
q.pro logN (µ = −14.7, τ = 3) logN (µ = −12.7, τ = 3)
q.recr.line logN (µ = −16, τ = 3) logN (µ = −14, τ = 3)
q.recr.net logN (µ = −16, τ = 3) logN (µ = −14, τ = 3)

Results of sensitivity analysis

The use of alterpriors for both reporting probabilities yields slightly higher
(about 0.1) recreational reporting posteriors than does the actual priors, see
Figure 19. For the professional reporting probability, the posterior mean is slid
upwards, but posterior mode remain similar as when using the actual prior. The
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posterior of natural mortality is increased. Change in priors of reporting rates
causes lower professional catchability posteriors, but distributions of two recre-
ational fleets are not much influenced. Due to only small changes in posteriors of
catchabilities, the posteriors of fishing mortality rates remains on similar levels
compared to the actual results.

The results seem to be the most sensitive to priors of catchability coefficients,
see Figure 20. The model was run changing priors for all three catchabilities
together upwards. The priors were formulated as log-normal distribution in
both cases, and only the mean parameter µ is changed while inverse variance
parameter τ = 1/σ2 remained the same. Our alternative prior knowledge causes
opposite changes to posteriors of natural mortality and professional catchability
as does the alterprior of reporting rates in the previous paragraph. Posterior
catchability of recreational nets is lifted up and the recreational reporting rate
goes down. Influences to recreational catchability and gear reporting are minor.
Although the alterprior nearly doubles the fishing mortalities of both recre-
ational fleets, the absolute affect to total fishing mortality rate is not very large.
This is due to recreational fishing mortality rates having smaller absolute values
than professionals.

Alterpriors of tag shedding probabilities have very high upward impact on
the posterior of professional catchability coefficient, see Figure 21. Other catch-
abilities are not much influenced and the change in natural mortality posterior
is small. Recreational reporting rate becomes lifted upwards, and posterior of
professional reporting becomes highly skewed to the right even though the pos-
terior mode remains rather similar. The large change in professional catchability
posterior is crucial; if we believe in lower tag shedding then we should believe
that professionals are capturing much larger amount of fish.

Alterprior of natural mortality rate influences the posteriors of natural mor-
tality upwards, and professional catchability downwards, see Figure 22. Also,
professional reporting rate is increased to 0.2 (doubled). Reporting rate or
catchabilities of recreational fleets are not influenced. Posteriors of total fish-
ing mortality are almost halved for some years, due to such massive change in
professional catchability. However, upward change of natural mortality is about
the same size: close to 0.5. So, the total mortality rate (natural plus fishing) is
very robust to priors even in this case.

To put this all together, the most of the variables of interest are sensitive
to prior distributions set. Priors used are informative by nature, and the data
give only relatively weak information about the fish mortality. Some of the
variables are more sensitive to priors than others. Especially professional catch-
ability and natural mortality seemed to be quite sensitive to prior distributions.
Catchabilities of recreational lines and recreational nets fleets were less variable
to changes in prior distributions than other variables. The total mortality is
less sensitive than marginal distributions to changes of priors. Reason to this
is a negative correlation between the natural mortality and professional catcha-
bility. The sensitivity analysis implies that carefully produced and scientifically
argumented prior distributions are important in this type of problems, were the
information coming from the data is weak.
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6 Discussion

The objective of this master’s thesis was to produce posterior probability distri-
butions of instantaneous natural mortality and fleet-specific instantaneous fish-
ing mortality rates using mark-recapture tagging data and fishing effort data.
The idea was to produce estimates using all the relevant information exclud-
ing information given by total catch data. The work also aimed at producing
the gear-specific catchability coefficients. In addition, we intended to study the
sensitivities of the final results to prior distributions set.

The objectives set were accomplished, and we were able to estimate posterior
distributions of fleet-specific catchabilities and tag reporting rates, and also
the instantaneous natural mortality rate was estimated. Unfortunately, one
did not manage to accomplish one of the aims: estimating the gear-specific
catchabilities. The aim was relieved due to insufficient size of data. One had
to split the data to multiple fleets because of differences between fleets in the
reporting probabilities. If the rather small data set are yet once again splitted to
many subgroups and gear-specific catchabilities are estimated, the uncertainties
would have been very high. Also, we did not want to surpass the time limits
set to this work. To put this altogether, one managed to produce posterior
probability distributions, which could be applied in the subsequent work of the
ECOKNOWS project.
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A Sensitivity plots
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Figure 19: Sensitivity to reporting rate priors: Catchability, reporting rates and
natural mortality posteriors of alternative priors (dotted blue line) and actual
prior (black line). Plot visualized sensitivity to prior of reporting probabilities.
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Figure 20: Sensitivity to catchability priors: Catchability, reporting rates and
natural mortality posteriors of alternative priors (dotted blue line) and actual
prior (black line). Plot visualized sensitivity to prior of catchabilities.
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Figure 21: Sensitivity to tag shedding priors: Catchability, reporting rates and
natural mortality posteriors of alternative priors (dotted blue line) and actual
prior (black line). Plot visualized sensitivity to prior of catchabilities.
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Figure 22: Sensitivity to natural mortality priors: Catchability, reporting rates
and natural mortality posteriors of alternative priors (dotted blue line) and
actual prior (black line). Plot visualized sensitivity to prior of natural mortality.
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B Backgrounds of mark-recapture

The Petersen method is an early version of mark-recapture methods. It assumes
that marked subpopulation of animals in the release phase is a random sample
from the whole population of interest, called as the ”first sample”. The second
sample refers to the recapture stage. The same assumption of a random sample
also holds in the recapture phase.

Assumptions of Petersen method are:

(i) The population is closed, so that N is constant.

(ii) All animals have the same probability of being caught in the first sample.

(iii) Tagging does not affect the catchability of an animal.

(iv) The second sample is a simple random sample.

(v) Animals do not lose their marks in the time between the two samples.

(vi) All marks are reported on recovery in the second sample.

Petersen estimator N̂ is an estimator of the true population size N . Let us
denote the number of animals in the first sample as n1, in the second sample as
n2, and the number of the tagged animals in second sample as m2. See Table
1. Then under the assumptions (i)-(vi) ratios between the samples m2

n2
≈ n1

N̂
are

expected to be the same. Therefore Petersen estimator is

N̂ =
n1n2
m2

. (32)

The estimator (1) can be largely biased in small samples, so one might want to
use a modified estimator

N∗ =
(n1 + 1)(n2 + 1)

(m2 + 1)
− 1. (33)

When n1 +n2 ≥ N the modified estimator is unbiased and if n1 +n2 < N then
bias is reasonably small.

The asymptotic variance of Petersen estimator (1) is

Var(N̂) =
n1n2(n1 −m2)(n2 −m2)

m3
2

(34)

(Bishop et al., 1975, p. 233). Approximately unbiased estimator of variance of
modified Petersen estimator (33) is

V ∗ =
(n1 + 1)(n2 + 1)(n1 −m2)(n2 −m2)

(m2 + 1)2(m2 + 2)
. (35)

Both variance estimates (34) and (35) are approximately the same when sample
sizes are large.
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Petersen estimate can be still used, when natural mortality takes place. The
same equations still hold, if mortality is a random sample or if marked and
unmarked animals have the same survival probability φ. This can be seen from
the equation

E

[
m2

n2
|n1
]
≈ φn1
φN

=
n1
N
.

C JAGS code

Following JAGS-code consist of data section and model section. In data section
the data is modified and in the model section the model is defined. The model
section begins by defining of a state-space model in rows 24-51, which imputed
the missing effort values. Rows 53-87 define the prior distributions of the pa-
rameters to be estimated. Next, in rows 89-104 the parametrization described
in Section 3.2 is implemented. The code of the rows 106-135 calculates the
probabilities of fish life-histories (probabilities related to data matrix). This is
where our model highly relies on the work of Brooks et al., 2000. In the end,
rows 137-145 implements the multinomial likelihood and predictive values of the
model.

Variables m.prof.net, m.recr.net, m.recr.line and m.recr.mis are given in the
data as matrices having dimensions 12× 16. In addition E.recr.net, E.recr.line
and E.prof are vectors which could have missing values typed in as NA.

1 # data section begins

2 data {

3 for(i in 1:7) {

4 # professional net gears

5 m[years.index[i] ,1:16] <-

m.prof.net[years.index[i] ,1:16]

6 # recreational net gears

7 m[years.index[i] ,17:32] <-

m.recr.net[years.index[i] ,1:16]

8 # recreational line gears

9 m[years.index[i] ,33:48] <-

m.recr.line[years.index[i] ,1:16]

10 # recreational line+net gears with unreported gear

type

11 m[years.index[i] ,49:64] <-

m.recr.mis[years.index[i] ,1:16]

12
13 m[years.index[i],65] <- r[years.index[i]] -

sum(m[years.index[i],1:(4*16)])

14 }

15 for(ii in 5:9) {

16 for(j in 1:49) {

17 m[ii,j] <- 0

18 }

19 }
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20 } #data section ends

21
22 model {

23
24 # Observation model for recreational fishing effort:

25 for(t in 2:16) { #loop over the years

26 E.recr.net[t] ~ dlnorm(mu.net[t],tau.obs.net[t])

27 E.recr.line[t] ~ dlnorm(mu.line[t],tau.obs.line[t])

28 }

29
30 E.recr.net [1] ~ dlnorm (14.57059 ,8)

31 E.recr.line [1] ~ dlnorm (14.67791 ,6)

32 mu.net [1] <- 14 .57059

33 mu.line [1] <- 14 .67791

34 for(t in 2:16) {

35 mu.net[t] ~ dnorm(mu.net[t-1], tau.process.net)

36 mu.line[t] ~ dnorm(mu.line[t-1], tau.process.line)

37 }

38 tau.process.net ~ dgamma (0.01 ,0.01)

39 tau.process.line ~ dgamma (0.01 ,0.01)

40
41 #priors

42 for(i in 1:16) {

43 cv.recr.net[i] ~ dlnorm(-2.12 ,5)

44 tau.obs.net[i] <- 1/log(pow(cv.recr.net[i],2)+1 .00001)

# added 0.00001 to avoid division by zero

45
46 cv.recr.line[i] ~ dlnorm(-2.12 ,5)

47 tau.obs.line[i] <- 1/log(pow(cv.recr.line[i],2)+1 .00001)

48 }

49
50 #lets impute one missing professional effort

51 E.prof [1] ~ dlnorm (13.33226 ,1/0.01689149)

52
53 # Fish parameters: semi -informative priors

54 #-----------------

55 # natural mortality

56 M ~ dlnorm(-1.65 ,5.2)

57 Mtagshed [1] <- M-log(1-pshed [1]) #Mtagshed holds all the

visible tag shedding

58 Mtagshed [2] <- M-log(1-pshed [2])

59
60 # tag shedding

61 pshed [1] ~ dbeta (14.79 , 72.21)

62 pshed [2] ~ dbeta (28.536 , 53.464)

63
64 # catchability coefficients

65 q.recr.line ~ dlnorm(-16, 3)

66 q.recr.net ~ dlnorm(-16, 3)

67 q.pro ~ dlnorm (-14.7, 3)
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68
69 for(i in 1:16) { #loop over the recapture years

70 F.recr.line[i] <- q.recr.line * E.recr.line[i]

71 F.recr.net[i] <- q.recr.net * E.recr.net[i]

72 F.pro[i] <- q.pro * E.prof[i]

73 }

74
75 # total mortality

76 for(t in 1:16) {

77 F.total[t] <- F.pro[t] + F.recr.line[t] + F.recr.net[t]

78 Z[t,1] <- F.total[t]+ Mtagshed [1] # age group 1

79 Z[t,2] <- F.total[t]+ Mtagshed [2] # age group 2

80 }

81
82 #reporting rates

83 p.report.recr ~ dbeta(3.428241 , 2.1662)

84 p.report.pro ~ dbeta(3.012988 , 4.866686)

85
86 #reporting rate of gear information given that capture is

reported

87 p.repgear.recr ~ dbeta (1,1)

88
89 #----------------------

90 # Code similar to Brooks ’ begins

91 #----------------------

92
93 # Possible fish event during a year:

94 for(agegr in 1:2) {

95 for(t in 1:16){

96 #probability of fish staying alive for a one year

97 p.survive[t,agegr] <- exp(-Z[t,agegr])

98 #probabilities of actually observing in the data

frame by fleets

99 p.observe.pro[t,agegr] <- (F.pro[t]/Z[t,agegr]) *

(1-exp(-Z[t,agegr])) * p.report.pro

100 p.observe.recr.line[t,agegr] <-

(F.recr.line[t]/Z[t,agegr ]) * (1-exp(-Z[t,agegr]))

* p.report.recr * p.repgear.recr

101 p.observe.recr.net[t,agegr] <-

(F.recr.net[t]/Z[t,agegr]) * (1-exp(-Z[t,agegr]))

* p.report.recr * p.repgear.recr

102 p.observe.recr.mis[t,agegr] <-

(F.recr.line[t]/Z[t,agegr ]) * (1-exp(-Z[t,agegr]))

* p.report.recr * (1- p.repgear.recr) +

(F.recr.net[t]/Z[t,agegr]) * (1-exp(-Z[t,agegr]))

* p.report.recr * (1- p.repgear.recr)

103 }

104 }

105
106 # Calculate the cell probabilities
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107 for(i in 1:16){

108 p[i,i] <- p.observe.pro[i,1]

109 p[i,i+16] <- p.observe.recr.net[i,1]

110 p[i,i+16+16] <- p.observe.recr.line[i,1]

111 p[i,i+16+16+16] <- p.observe.recr.mis[i,1]

112 prod_surv[i,i] <- p.survive[i,1]

113
114 for(j in (i+1) :16){ #loop over recapture years

115 prod_surv[i,j] <- p.survive[j,2] *

prod_surv[i,j-1]

116 p[i, j] <- p.observe.pro[j,2] *

prod_surv[i,j-1]

117 p[i, j+16] <- p.observe.recr.net[j,2] *

prod_surv[i,j-1]

118 p[i, j+16+16] <- p.observe.recr.line[j,2] *

prod_surv[i,j-1]

119 p[i, j+16+16+16] <- p.observe.recr.mis[j,2] *

prod_surv[i,j-1]

120 }

121
122 # Probability of animal never being seen again

123 p[i, nj] <- 1 - sum(p[i, 1:(nj -1)]) # this should

be checked by writing equations of not observing an

animal in j-i+1 years

124 }

125
126
127 for(i in 2:16) {

128 # Zero probabilities in lower triangles of table

129 for(j in 1:(i-1)){

130 p[i, j] <- 0

131 p[i, j+16] <- 0

132 p[i, j+16+16] <- 0

133 p[i, j+16+16+16] <- 0

134 }

135 }

136
137 # Define the likelihood

138 for(i in 1:7){

139 m[years.index[i], 1:(4*16+1)] ~

dmulti(p[years.index[i], 1:(4*16+1)],

r[years.index[i]]);

140 }

141
142 # Try some predictive values

143 for(i in 1:7){

144 m.pred[i, 1:(4*16+1)] ~ dmulti(p[years.index[i],

1:(4*16+1)], r[years.index[i]]);

145 }

146
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147 }

Overdispersion may be implemented by replacing lines 144-152 by

144 # Define the likelihood

145 theta.od ~ dunif(2.01 ,10000)

146 for(i in 1:7){

147 psamp[i, 1:(4*16+1)] ~ ddirch(theta.od *

p[years.index[i],]+0.1)

148 m[years.index[i], 1:(4*16+1)] ~ dmulti(psamp[i, ],

r[years.index[i]]);

149 }

150
151 # Try some predictive values

152 for(i in 1:7){

153 psamp.pred[i, 1:(4*16+1)] ~ ddirch(theta.od *

p[years.index[i],]+0.1)

154 m.pred[i, 1:(4*16+1)] ~ dmulti(psamp.pred[i, ],

r[years.index[i]]);

155 }

Catchability priors may be set by using alternative approach replacing lines
60-67 by

60
61 # catchability prior via harvest rates

62 theta [1] <- 5.833 #prof

63 theta [2] <- 3.417 #recr net

64 theta [3] <- 3.417 #recr line

65 H[1:3] ~ ddirich(theta [1:3])

66 scale ~ dbeta (1,1) # this parameter can be interpreted as

proportion of fishing from the living population

67
68 # catchability coefficients

69 q.recr.line <- -log(1-H[3]*scale)/E.recr.line.init

70 q.recr.net <- -log(1-H[2]*scale)/E.recr.net.init

71 q.pro <- -log(1-H[1]*scale)/E.pro.init

where E.recr.line.init, E.recr.net.init and E.pro.init are initial fishing efforts
given in the data.
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